5x(x-4)-3x(4x+1)=-x^2+3x-18

Simple and best practice solution for 5x(x-4)-3x(4x+1)=-x^2+3x-18 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x(x-4)-3x(4x+1)=-x^2+3x-18 equation:



5x(x-4)-3x(4x+1)=-x^2+3x-18
We move all terms to the left:
5x(x-4)-3x(4x+1)-(-x^2+3x-18)=0
We multiply parentheses
-(-x^2+3x-18)+5x^2-12x^2-20x-3x=0
We get rid of parentheses
x^2+5x^2-12x^2-3x-20x-3x+18=0
We add all the numbers together, and all the variables
-6x^2-26x+18=0
a = -6; b = -26; c = +18;
Δ = b2-4ac
Δ = -262-4·(-6)·18
Δ = 1108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1108}=\sqrt{4*277}=\sqrt{4}*\sqrt{277}=2\sqrt{277}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{277}}{2*-6}=\frac{26-2\sqrt{277}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{277}}{2*-6}=\frac{26+2\sqrt{277}}{-12} $

See similar equations:

| 3x^2-6x-3=21 | | −1=x/9 | | (3z+5)(3z-5)=0 | | 4=4c−8 | | -n-2n=-3n+6 | | 114+6x=180 | | 5(2x-8)=16 | | 14d-6=6 | | 90-x+5/2x=180 | | h+3=8 | | 7=k-1 | | -36=9(q+73) | | 2=n/ | | 293=95-y | | 6x–(x-1)=6 | | 16-49x^2=16−49x2 | | 8-8s=12s+52 | | 3x=-6-12 | | 2/3x=5/9-8/3x | | 6=4-q- | | 3x+5x-2x+15=45 | | w+3/4=21/3 | | -82=7k+19+3k | | K+1=2+1+k-2 | | 13k+17=20k-4 | | -5t9=24 | | (9x-1)+7(x+6)=-60 | | 22=y/4+17 | | 9-(x-3)-(6-(2-3x))=-x-1 | | 2n+11=11 | | -118=5(4+7x)+7 | | 8=12x-10 |

Equations solver categories